
RD-RI60 875 THE DESIGN AND INPLEMENTATION OF AN OPERATINGSISTEN V/1
FOR THE IBN PERSONAL CONPUTER(U) AIR FORCE INTOF TECH

URIGHT-PATTERSON AFE OH A J DEESE DEC 94

UNCLASSIFIED AFIT/CI/NR-85-i45T F/G 9/2 N

-. ~j: U,2 10.2-- -* .

9/

AA

812.0

1111 1 1.4

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREA
U
OF STANOARDS- 963- A

. *o.'

lINrl Ac6
Oro____SECURITY CLASSIFICATION OF THIS PAGE (W..,. ,.on0.mrod)

REPORT DOCUMENTATION PAGE II____"_, ,.%IrT .?N ORM

I. REPORT NUMBER \ 12. GOVT CCESSION NO. WMWLCIPIENT'S CATALOG PUMiwiLA
AFIT/CI/AR 85-145T,\

4. TITLE (and ubtlie) S. TYPE OF NEIPORT A PERIOD COVEREO

The Design And Implementation Of An THESIS/IM&AERYAV
Operating System For The IBM Personal 6. PERFORMING oRG. REPORT NUMBER
Computer

7. AUTHOR(e) I. CONTRACT OR GRANT NUMBER(@)

Albert James Deese, Jr.

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

AFIT STUD&NT AT: Georgia Institute of
Technology

Lf I. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE

N. AFIT/NR Dec 8f
WPAFB OH 45433 - 6583 13. NUMBER OF PAGES

54
" 14, MONITORING AGENCY NAME & ADDRESS(i/ dillereng from Controlling Office) IS, SECURITY CLASS. (of thi. report)

(.0 UNCLASSi II \IS&. DECL ASSl FIC ATION/ DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of Sia Report) I. ELAS IAIN ONRDN

' APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIM!TED CTE

A. NOV4 1985

17.)ISTRIaUTION STATEMENT (of the abstract entered In block 20, if diflerent from Report)°" B

16. SUPPLEMENTARY NOTES

APPROVED FOR PUBLjC RELEASE: IAW AFR 190-1 Dn oR cDean for Research and
Professional Developien

AFIT. Wright-Patterson AF8 OH
I. KEY WORPS (Consinue on rever.e side if neceeary end identify by bilock number)

20. AF3STRACT (Continue an reverse side I ne-e*eery and Identify by block number)

ATTACHED
iLL.

F ORM

DD I JAN 73 1473 EDITION OF I 1oV 65 ,s OUSOLETE JNCLASS

SEUIYLA SSI TIjON OO A04-Ijskl'j......................................

• " "_ >A ."-. '_,." ,• "" •" ""..". '". ".-.."...- ,."."".''.'..-..-..-'....-.............'...-.."....-"..-..."..,."..-"..-..-"'.''-'..'..

vi

SUMMARY

j This thesis documents the design and implementation

-. of an operating system for the Georgia Institute of
\---T o-an ter S i n e Laboratory

,- Technology Information ane Science

(GIT/ICSL). The operating system-, designated PCOS,

- .. developed in order to provide a pedagogical aid which could

- be used to provide students with a better understanding of

. . operating system principles. PCOS-is intenaed td be A

simple yet functional operating system which students can

* analyze, modify, and extend.

*PCOS is an acronym wy ch stands for Personal

Computer Operating System. -PCOS was designed and

implemented on an IBM Personal Computer (IBM PC). However,

the strategy used to structure PCOS along with the

algorithms used to implement PCOS are applicable to most

contemporary computer systems.

This thesis presents the requirements and design

criteria which were used to guide the design of PCOS. The

decisions made during the design of PCOS are discussed.

The algorithms and data structures used to implement PCOS

are discussed. And, further development of PCOS is also

discussed.

it

85-145T

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to ascertain the value ad/or contribution of research
accomplished by students or faculty of the Air Force Institute of Technology (AU). It would be

* greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AFB OH 45433

RESEARCH TITLE: The Design and Implementation of an Operatin4 System for the

IBM Personal Computer

AUTHOR: Albert James Deese, Jr.
RESEARCH ASSESSMENT QUESTIONS:

1. Did this research contribute to a current Air Force project?

() a. YES () b. NO

2. Do you believe this research topic is significant enough that it would have been researched
* (or contracted) by your organization or another agency if AFIT had not?

a. YES () b. NO

3. The benefits of AFIT research can often be expressed by the equivalent value that your
*. agency achieved/received by virtue of AFIT performing the research. Can you estimate what this

research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

a. MAN-YEARS () b. $
* 4. Often it is not possible to attach equivalent dollar values to research, although the
*.- results of the research may, in fact, be important. Whether or not you were able to establish an

equivalent value for this research (3. above), what is your estimate of its significance?

a. HIGHLY () b. SIGNIFICANT () c. SLIGHTLY () d. OF NO
SIGNIFICANT SIGNIFICANT SIGNIFICANCE

5. AFIT welcomes any further comments you may have on the above questions, or any additional
details concerning the current application, future potential, or other value of this research.
Please use the bottom part of this questionnaire for your statement(s).

NAME GRADE POSITION

. ORGANIZATION LOCATION

STATEMENT(s):

.........................

....................................

FOLD DOWN ONl OUTSIDE U SAL WITH TAPE

* AFIT/NR NOI POSAG
MIGGIT ATrOM~ AN ON 4543SW I NECESSARY

IIIO III AILED
OFFICIAL BUSINESS IN M~E

PENALTY FOR PRIVATE USE. 8300UNTDSAE

I BUSINESS REPLY MAIL I_ _

IRS USMS PERMIT NO. 7132 WAHI 8TON S.C.

POSAGE WVILL 32 PAID BY ADDUSSUE

AMI/ DM _______

Wri~t-Patterson AFB OH 45433______

FOLD IN

..7
.

THE DESIGN AND IMPLEMENTATION OF AN OPERATING SYSTEM

FOR THE IBM PERSONAL COMPUTER

A THESIS

Presented to

the Faculty of the Division of Graduate Studies

By

Albert James Deese, Jr.

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Information and Computer Science

Georgia Institute of Technology

December 1984

..

The Design and Implementation of an Operating System

for the IBM1 Personal Computer

Approved:

ar tin 9. McKendry, Chairman

Richard J.1L&eBlanc

f'~ tWDate approved by Chairman

2

Le an anii PnYehn

ii

,'. ACKNOWLEDGEMENT S

I would like to thank my thesis advisor Dr. Martin

i S. McKendry for the ass1 ,tance and guidance he provided

~over the course of this project. I would also like to

i I thank the members of my reading committee Dr. Richard J.

! LeBlanc and Dr. Pin-Yee Chen.

I am especially grateful to my wife, Amelia, for her

support during the course of this project, and assistance

in preparing the final manuscript.OT

TABLE OF CONTENTS

Page
* LIST OF TABLES..........................iv

* LIST OF ILLUSTRATIONS............................v

SUMMARY..................................vi

Chapter

I. INTRODUCTION...........................

II. THE PCOS PROJECT.....................4

Requirements............ 4

Design.......................4

Implementation...................8

III. FURTHER RESEARCH AND DEVELOPMENT...........26

IV. CONCLUSION..........................29

REFERENCES..................................31

A PP ENDI X

A. KERNEL PRIMITIVES.......................35

iv

LIST OF TABLES

Table Page

2-1 Kernel Services 11

2-2 Process Control Block 13

2-3 Memory Control Block 16

2-4 Interrupt Vector Status Table Entry 18

2-5 Interprocess Communication Control Block . . . 19

2-6 Device Driver Services 22

2-7 File Server Services 23

2-8 CLI Commands 24

3-1 Proposed Exception Management Services 26

...""."" .

I- V

CHAPTER I

INTRODUCTION

*Basically, an operating system is a resource

manager. It is responsible for the effective and efficient

management of computer hardware. Consequently, the

operating system is olie of the key components of a computer

t system.

* 'The study of operating systems is an integral part

of any progressive computer science curriculum.

Introductory courses present the general principles of

operating systems while advanced courses present operating

system design strategies and implementation techniques in

greater detail.

Courses on operating systems should provide insight

into the design and implementation of operating systems.

However, Lions (1978) points out that the presentation of

general principles alone proves to be "rather dry

intellectual fodder for students with limited practical

experience."

In an effort to provide students with a better

understanding of the design and implementation of operating

systems, educators such as Lions have proposed several

different approaches for teaching operating system

o.:AS-

2

*- principles. Since students are usually more interested in

seeing something work than reading theoretical examples,

the approaches emphasize the study and development of

* actual operating systems. One approach is to conduct a

comprehensive study of an actual operating system in an

effort to show students how theory has been put into action

(Lions, 1978; McCharen, 1980). Another approach is to

modify or extend an existing operating system (Bauer,

1975). Yet another approach is to require students to

develop a pedagogical operating system from scratch

(LaGarde, Olivier & Padiou, 1981; Lane, 1981; Wadland

1980).

This thesis documents the design and implementation

of PCOS, an operating system for the Georgia Institute of

Technology Information and Computer Science Laboratory

(GIT/ICSL). The purpose of this research project is to

initiate development of an operating system for the IBM

*i Personal Computer which can be used to provide students

with a better understanding of operating system principles.

PCOS is intended to be a simple yet functional operating

* system which students can analyze, modify, and extend.

PCOS is an acronym which stands for Personal Computer

Operatinv System.

The next chapter discusses the design and the

implementation of PCOS in detail. Chapter Three discusses

furt er development of PCOS. And, Chapter Four presents

.7

3

conclusionls derived from this project.

.. L'- J... -,' . +- . - -- m m

4

* CHAPTER II

THE PCOS PROJECT

Requirements

As stated in the previous chapter, the purpose of

this research project is to develop an operating system

which can be used to provide students with a better

understanding of operating system principles. The general

requirement is that it be a good example of current

operating system design practice.

The specific requirements for PCOS were established

after reviewing the capabilities of several commercially

available operating systems (Banahan & Rutter, 1983;

Deitel, 1983; Holt, 1983; Madnick & Donovan, 1974; McKeag,

1976; Zarrella, 1981, 1982). It was decided that PCOS

should offer the following capabilities:

(1) provide a single-user environment,

(2) support multiprogramming, and

(3) support sequential disk file organization.

Design

Criteria

Before discussing the design decisions, it is

necessary to discuss the general design criteria used to

guide this development effort. The general design criteria

• • .,.-....-.... ,. -.-
• " " .mT ,,, ... * .. **".**". .-

5

are as follows: simplicity, efficiency, and

maintainability.a
PCOS is intended to be used to provide students with

*" a better understanding of operating system principles.

* Without simplicity a complete understanding of the system

* ° would not be possible. Therefore, PCOS should not contain

any unnecessary complexity. It should be based on a small

"" set of relatively simple concepts.

* PCOS is also intended to be a simple yet functional

operating system. In order to be truely functional it must

be efficient.

To be able to adapt to a constantly changing

environment, PCOS should be easy to maintain. As a result,

PCOS should be well structured.

Decisions

This section discusses the major design decisions

made during the development of PCOS. The rational behind

each decision is presented.

First, a computer system was selected for the

initial implementation of PCOS. The Information and

Computer Science Laboratory at Georgia Tech has several

computer systems which are available on a regular basis for

student research. However, most of the systems are multi-

user systems. Since it would be to costly in terms of lost

service alone to dedicate a multi-user system to a single

user, they were eliminated from further consideration. In

- -, •
.5 .- . ," " ". .".' '"""...** .'. "" "'."" ". ". " "" """ "' " """ ' -"'-• •" "" "

addition to the multi-user systems, there are several

single-user systems. Of the single-user systems, the IBMI

PC seemed to be the most promising. A typical IBM PC

configuration includes a CPU, a keyboard, a monitor, 128k

bytes of internal memory, 2 5-1/4" floppy disk drives, and

a dot-matrix printer. In addition, the Intel 8088

5microprocessor used in the IBM PC supports both segmented

memory and interrupts. Given the above considerations, the

IBM PC was selected.

Once the implementation system was selected, the

implementation language was chosen. The choice of an

implementation language was easy. At the time, only a few

languages were available: Pascal, Fortran, Basic, and

assembly language. Operating systems are often implemented

in assembly language for space and time considerations

(Freedman, 1977). However, since it is easier to develop

and maintain a program written in a high-order language

(HOL), Pascal was chosen to be the primary design and

implementation language of PCOS. In order to enhance

both maintainability and portability, assembly language was

used to code only those routines which were neither

feasible nor practical to implement using Pascal.

Next the strategy used to structure the PCOS was

choosen. Both the monolithic monitor approach and the

kernel approach are strategies which can be used to

structure operating systems (Deitel, 1983; Holt, 1983).

** * '* -.,.,. .. .-.~ . . % . % . * * .%

4

7

The monolithic monitor approach collects the

resource management functions provided by an operating

system into a single, monolithic module. The main

advantage of the monolithic monitor approach is its

simplicity. All operating system activity takes place in a

single module. The main disadvantage is the excessive

t amount of time external interrupts are disabled. In order

to maintain the integrity of the tables it maintains, the

monitor disables external interrupts whenever it is

running. Since all resource managment activity takes place

within the monitor, it is possible that interrupts (e.g.,

information) may be lost.

The kernel approach is an alternative to the

monolithic monitor approach. An operating system based on

the kernel approach is composed of a set of asynchronous

processes and a small executive module (or kernel).

Resource management functions are placed in interruptable,

asynchronous processes. The kernel provides a set of

primitive operations that support the cooperation of

asychronous processes. Using the kernel approach,

interrupts are disabled for a shorter period of time. In

addition, the operating system is easier to maintain since

data structures and algorithms are encapsulated in

independent processes. In an effort to create a highly

modular and understandable system, the decision was made to

use the kernel approach to structure PCOS.

lip

8

As mentioned in the preceding discussion, the kernel

must provide a set of primitive operations that support the

cooperation of asynchronous processes. After reviewing the

literature generated by past operating system development

efforts (Agoston, 1977; Bauer, 1975, 1976; Bayer &

Lycklama, 1975; Brinch-Hansen, 1970, 1973; Burgett &

O'Neil, 1977; Crowley, 1981; Faro, Messina & Serra, 1981;

Frank & Theaker, 1979; Garetti, Laface & Rivoira, 1981;

Gorski, 1980; Hammond, 1980; Haridi & Thorelli, 1978; Kahn,

S1978; Lycklama & Bayer, 1978; Madnick & Donovan, 1974;

Mark, Eggenberger & Nehmer, 1977; Pohjanpalo, 1981; Seidel

& Grebe, 1979; Shaw, Weiderman, Andrews, Felcyn, Rieber &

Wong, 1975; Sincoskie & Farber, 1980a, 1980b; Solomon &

Finkel, 1979; Thorelli, 1978), it was decided that the

kernel should provide the following services:

(1) process management,

(2) memory management,

(3) interrupt management,

(4) interprocess communication management, and

(5) timer management.

Implementation

System Architecture

.PCOS is composed of several hierarchical layers

called levels. The levels are designed to be highly

independent by encapsulating resources and data

9

representations within each level. Such encapsulation of

objects allows levels to represent abstract views of the

objects for which they are responsible. Figure 2-1 depicts

the different layers that make up PCQS.

------------ +-----------
!Executive! ! User

Level 3 !Process !! Process

------------ ------------

!File
Level 2 Server

I

- Level 1 !!!Drivers!

+--
Level 0 !Kernel

+--

Figure 2-1. PCOS System Hierarchy

The lowest layer, level 0, is the system kernel.

The kernel is the nucleus of the operating system. It

provides a basic set of services which are available to all

processes in the system. These services facilitate process

management, memory management, interrupt management,

interprocess communication management, timer management,

and debugging.

Level 1, the Basic I/0 System (BIOS), is composed of

a set of processes known as device drivers. These device

S

10

* drivers are responsible for providing I/0 device support.

PCOS currently includes a console driver, a disk driver,

and a printer driver.

The Extended I/0 System (XIOS), level 2, currently

includes a single process, the File Server. The File

Server presently supports only sequential file access.

*' ** The highest layer, level 3, is composed of both user

.and system processes. Currently, the only processes which

reside at level 3 are the Executive Process (EXEC) and the

Command Language Interpreter (CLI). EXEC is responsible

for starting the system. It does this by first creatingI
and then activating the other processes which compose PCOS.

And, the CLI is the process responsible for providing the

user interface to PCOS.

Component Details

The Kernel. The kernel provides a set of basic

services which can be used by any process in the system.

The kernel primitives or services can be grouped into six

functional categories: process management, memory

management, interrupt management, interprocess

communication management, timer management, and debugging.

Table 2-1 lists the services provided by the kernel. And,

Appendix A contains descriptions of the kernel primitives.

The first category of primitives manipulate

processes. Processes are programs that perform a specific

function. A process consists of a sequence of

11

Table 2-1. Kernel Services

CATEGORY SERVICE

Process Management Create Process
Activate Process
Sleep
Suspend Process
Destroy Process
Find Process

Memory Management Allocate Memory
Deallocate Memory

Interrupt Management Connect to Interrupt
Await Interrupt
Signal Interrupt

Disconnect from Interrupt

Interprocess Communication Send Message
Management Receive Message

Timer Management Set Clock
Read Clock

Debugging System Dump
System Trace

instructions, and a set of resources. Processes can be

categorized as either user or system processes. A user

process is a process that is written by a user. It

performs a function directly for the user. A system

process is a process that performs functions (or services)

for a user process. System processes are supplied with

PCOS that provide basic device management services, and

extended I/0 services.

Processes can be created and destroyed dynamically.

12

The maximum number of processes that can exist

simultaneously is specified at system generation. The

current implementation of PCOS can handle up to 16

concurrent processes. Each process within PCOS has a

unique identification number (PID) associated with it.

T Each process has a context associated with it. The

- context of a process is the information that specifies the

" current status of the process. The current values of the

processor registers, including the instruction pointer, and

the resources currently allocated to it define the context

of the process.

When a process' execution is interrupted, its
t

context is saved in the process control block (PCB)

associated with the process so that it can be restarted at

a later time. A PCB is a system data structure which is

allocated to a process when it is created. A PCB has two

major sections: a process descriptor block (PDB); and an

interrupt save area (ISA). Table 2-2 describes the

contents of a PCB. The PDB contains information including

the process identification number, and the priority of the

process. The ISA provides a storage area for the process'

registers when it is interrupted.

During its existence, a process goes through various

process states. Figure 2-2 depicts the various states that

a process may go through during its existence.

A process is undefined until its existence isI'

13

Table 2-2. Process Control Block

++---+

FIELD NAME ! DESCRIPTION
+---+

! PROCESS DESCRIPTOR BLOCK:
+---
SUCCEEDINGPCB ! The id of the next PCB on this queue.

This field is used to link PCBs on the
ready & delay queues.

I I

PRECEEDINGPCB ! The id of the previous PCB on this
+ queue. This field is used to link

PCBs on the ready & delay queues.

ID ! The PID associated with this PCB.

NAME ! A 6 character string which identifies
v I the process which this PCB represents.

I PARENT ! The PID of the pareat process.

'YOUNGERSIB ! The PID of the process created by the

! parent after this process.

OLDERSI3 ! The PID of the process created by the
parent before this process.

CHILDREN ! The PID of the last process created by
this process.

PRIORITY ! The priority at which this process
executes.

STATUS ! The current status of this process:
running, ready, waiting, suspended, or
undefined.

BLOCKS ! The events this process is waiting on:
message, interrupt, and/or timeout.
This field is only meaningfull if
STATUS is waiting.

WAKEUPS ! The events that have happened to this
process: message, interrupt, and/or
timeout.

MESSAGECOUNT The number of messages que.,ed for this
process.

------------ +--

I
- ' .' . - . " . . q " . - - . . ' " . . . - - . - . ". . - . - " - . . - - - . . - . . - . " - . . " - .

14

Table 2-2. Process Control Block (continued)

+---
FIELD NAME ! DESCRIPTION

--- +
MESSAGES ! A pointer to the first IPCCB (message)

for this process.

DELAY ! A word which specifies the time,
in system time units, the process

I is to be delayed. This field is
only meaningfull if STATUS is waiting

I ! and BLOCKS is timeout.

NEXTPCB ! The id of the next PCB on either the
active or free queue.v

PREVPCB ! The id of the previous PCB on either
! the active or free queue.

--
! INTERRUPT SAVE AREA:

AX AX register save area.

! BX ! BX register save area.
" I I

CX ! CX register save area.

DX ! DX register save area.
S S r

SP SP register save area.

I I reitrsv ra

BP BP register save area.

SI SI register save area.
I I I

SDI DI register save area.

CS CS register save area.
I- I I

DS I DS register save area.

SSS ! SS register save area.
"-I I

! ES ! ES register sa'.e area.

vIP ! IP register save area.

FLAGS ! FLAGS register save area. !
+---+

15

recorded in a PCB. When the information about a process

has been entered into a PCB, the process moves to the

suspended state. A process remains in the suspended state

until it is activated by another process. After it is

activated, a process moves to the ready state. A ready

process is inserted into a first-in, first-out priority

tqueue known as the ready list. As processes complete

execution, the process dispatcher removes the next ready

process from the ready list and assigns the processor toti it. A process is assigned to the processor by restoring

its registers from its ISA and then transferring control to

it. A process remains in the running state until it is

interrupted, waits for a message, is suspended by another

process, or completes its processing.

+ --------------

! undefined !

+--------------

! suspended !
+---------------

! ready ------------- +
+-------------+

I I

I I

+-------------+ +-------------+
running ------ ! waiting

+------------- +-------------+

Figure 2-2. Process State Diagram

ILSdi

16

Six primitives are provided to manage processes:

-- CREATE PROCESS, ACTIVATE PROCESS, SLEEP, SUSPEND PROCESS,

DESTROYPROCESS, and FINDPROCESS. A process can create a

descendant process (child) using the CREATEPROCESS

primitive. First, a PCB is removed from the free PCB queue

and encoded with the information supplied in the call.

Then the new PCB is queued on the active PCB queue. After

creating a child process, the parent can activate it using

the ACTIVATEPROCESS primitive, suspend it using the

ISUSPEND-PROCESS primitive, or destroy it using the

DESTROYPROCESS primitive. The DESTROYPROCESS primitive

Ialso destroys all descendents of the destroyed process. A

process can find a previously created process using the

FINDPROCESS primitive.

The second category of primitives manipulate memory.

In the current implementation of PCOS, a fixed amount of

memory is linked onto a free memory queue. Table 2-3

describes the format of a memory control block. The memory

Table 2-3. Memory Control Block

++---+

FIELD NANE ! DESCRIPTION

NEXT ! A pointer to the next MC3 in the free
memory queue.

SIZE ! The size, in paragraphs, of this memory
block.

FILLER ! Forces size of MCB to be 16 bytes (I
paragraph).

+---+

177

linked on the free memory queue is used to satisfy requests

for memory from processes.

Two primitives are provided to manage memory:

ALLOCATEMMORY, and DEALLOCATEMEMORY. The

ALLOCATEMNEMORY primitive searches the free memory queue

for the first block of memory that satisfies the request.

If the amount of memory found is larger than the amount of

memory requested, it is split and the excess returned to

the free memory queue. The DEALLOCATEeoORY primitiveSreturns the specifed block of memory to the free memory

queue. If possible, the returned block is combined with

adjacent memory blocks on queue to form one large block

of free memory.

The tnird category of primitives manipulate

interrupts. To redirect control after an interrupt

occurs, the Intel 8083 microprocessor uses an Interrupt

Vector Table (I'). The IVT starts at location 0 of

;:ain memr and contains 256 interrupt vectors which are

numbered 0 - 255. Each interrupt vector can be loaded with

the fiiress of the interrupt-service routine that handles

t.rit t e o interrupt.

In order to manage the IVT, the kernel maintains an

Interrupt Vector Status Table (IVST). Table 2-4 describes

*the contents of an entry in the IVST. There is one entry

in the IVST for each interrupt vector in the rT.

During system initialization, interrupt vectors

thS~(rs fteitrutsrieruieta ade

tha t *e o t r u t

18

ITable 2-4. Interrupt Vector Status Table Entry

I FIELD NAME ! DESCRIPTION
+---+

AVAILABLE ! The status of this interrupt: allocated,
q or unallocated (e.g. available). I

PID ! The PID of the interrupt handler process I
* I ! associated with this interrupt.

+---+

0 - 254 are marked as available for use, and interrupt

vector 255 is marked as unavailable. Interrupt vector 255

is the interrupt vector used by processes to access the

~kernel.

f Four primitives are provided to manage interrupts:

CONNECTINTERRUPT, AWAITINTERRUPT, SIGNALINTERRUPT, and

DISCONNECT INTERRUPT. The CONNECT INTERRUPT primitive

reserves an interrupt vector for a process and assigns an

interrupt handler to the interrupt vector. The process can

then use the AWAITINTERRUPT primitive to suspend its

execution until its interrupt handler uses the

SIGNALINTERRUPT primitive to activate it or a specified

time elapses. The DISCONNECTINTERRUPT primitive cancels

the assignment of an interrupt vector to a process.

The fourth category of primitives manipulate

messages. Processes communicate with one another by

exchanging both commands and data. Processes exchange both

commands and data through the use of messages.

M.essages are the basic unit of information exchange

• ... ,,.- ..

19

between processes. The interprocess communication (IPC)

tfacility of PCOS provides a flexible communication

mechanism which can be used to support communication

between processes, general network communication, and

resource sharing. The interprocess communication facility

provided by PCOS is a pure datagram facility. It neither

guarantees delivery of a message nor acknowledges its

receipt.

A message is delivered using an interprocess

communication control block (IPCCB). A IPCCB consists ofI two parts: (1) a header; and (2) a body. The format of a

IPCCB is illustrated in Table 2-5. The message header

contains information which identifies the the process

sending the message, and the length of the body of the

i.essage. The body of the message contains the information

being exchanged.

Table 2-5. Interprocess Communication Control Block

++---
FIELD NAME ! DESCRIPTION

+---
NEXT ! A pointer to the next IPCCB in this

process' message queue.

SOURCE ! The PID of the process which sent this
message.

LENGTH ! The length, in bytes, of this message.

DATA ! The message.

Two primitives are provided to manage messages:

A.~~~ ~~~~ ~~~~* . .J* .~''' .7~'* .* . -. . - -. ~ . .

- i- .~ . - o

20

;7

SENDMESSAGE, and RECEIVEMESSAGE. The SENDMESSAGE

- primitive sends the message specified to the designated

process. After the kernel allocates memory for an IPCCB

for the message, the message along with its length and the

PID of the sending process is copied into the IPCCB. The

IPCCB is then linked to the FIFO message queue of the

destination process. If the destination process is

awaiting a message and executes at a higher priority than

the sending process, it receives control of the CPU and the

sending process is inserted into the ready list. If the

destination process is awaiting a message and executes at

a priority equal to or lower than the sending process, it

*is inserted into the ready list and the sending process

continues execution. And, if the destination process is

not awaiting a message, the sending process simply

continues execution.

The RECEIVEMESSAGE primitive returns the message

at the head of the process' FIFO message queue. The

message is first copied into the process' data space,

then dequeued from the message queue, and finally the

memory used to buffer the message is returned to the

system. If no messages are queued and no delay is

specified, control returns to the receiving process;

however, if a delay is specifed, the process doesn't

receive control until it receives a message or the delay

has elapsed. And, if an infinite delay is specified, the

* ::t -. * -.. * *

21

process doesn't resume execution until it receives a

message.

The fifth category of primitives manipulate the

system clock. The system clock is initialized to 00:00:00

hours 0 ticks during system initialization. A system time

unit or tick is 1/20th of a second in duration.

*Two primitives are provided to manage the system

clock: SETCLOCK and READCLOCK. The SETCLOCK primitive

sets the system clock to the value specified; while the

READCLOCK primitive returns the current setting of the

ht system clock.

And, the sixth category of primitives facilitate

*debugging. The primitives which facilitate debugging are

SYSTEMDUMP and SYSTEMTRACE. The SYSTEMDUMP primitive

produces a he::adecimal dump of the contents of the

registers and the specified memory block at the time of

the dump on the system printer. The SYSTE.'[_TRACE primitive

prints the message specified on the system printer.

The Basic I/O System. The Basic I/O System (BIOS)

of PCOS is responsible for device management. Three device

drivers are included in the BIOS of PCOS: a console

o driver, a disk driver, and a printer driver. The services

provided by each of the driver processes are listed in

Table 2-6.

Communication with the device driver processes that

form the BIOS of PCOS is achieved through the use of

.* . -. - ". ,.-. . - .-... . .- 2 .- . "- ". .•"- - ''--- -

*22

Table 2-6. Device Driver Services

DEVICE DRIVER SERVICE

Console Read a Character from Keyboard
Write a Character to Video Monitor

Disk Read a Sector
Write a Sector
Reset Diskette System
Verify Sector
Format Disk

Printer Write Character to Printer
Reset Printer
Read Printer Status

I-----------

t messages. Basically, each device driver is a server

process that is responsible for a specific system resource.

Each server process was developed using the Requestor-

Server Model (Britton & Stickel, 1980) as a guide. Figure

2-3 illustrates the basic form of a server process.

procedure terminal;
begin

loop
receive_a_message;
case message.type of

when 0 => read character;
when 1 => display_character;

end case;
send_a_reply;

end loop;
end terminal;

Figure 2-3. Example Server Process

Each server process (e.g., console device driver)

*1
" ..,"-.-.".'.'...'..-...-.-, ..- ..* ""-.-.' '-.:.''-.-\-,'.'....L'. ."."-...*...- :."r-.,.-''-."'- -•-

V.+

La

p. .23

waits for a service request using the RECEIVEMESSAGE

primitive. Once it has processed a service request, it

sends a reply message to the requestor using the

SENDMESSAGE primitive. This sequence of operations

continues until the server is terminated.

rThe Extended I/0 System. The Extended I/0 System

(XIOS) sequential disk file access. The File Server is the

only component of the XIOS. Table 2-7 lists the services

that are provided by the File Server.

Table 2-7. File Server ServicesII
CATEGORY SERVICE

File System Volume Mount a File System Volume
Dismount a File System Volume

File Connection Open File
Close File

File I/O Read a Character from a File

Like the device d:ivers that form the BIOS of PCOS,

the file server is also a server process. Other processes

can communicate with the file server through the use of

messages.

To open a file, a task sends an OPEN message which

* conatins the name of the file to be opened to the file

server. The task then blocks itself by waiting for the

file server's reply. When the file server receives the

+ - +++" - o"-' '" -" "~~~..-. '... ' . .',',... . ,,. .-. '. "-.-'. . ,-...... ' "-- . -"..

24

message, it interprets it, opens the file (if it exists),

*and assigns a unique file id to it. The file server then

sends a completion message which contains the file id to

the process. This causes the process to be rescheduled.

Using the file id assigned by the file server, the process

can now perform I/O operations on the file.

The Command Language Interpreter. The system

operator or user interacts with PCOS through the command

language interpreter (CLI). The user issues commands to

the system through a command language which is interpreted

by the CLI.

Table 2-8. CLI Commands

2COMMAN D DESCRIPTION

DIS,.IOUNT Mounts a file system volume on disk
drive 0.

DISPLAY Displays the contents of a file in
hexadecimal on either the system
console or the printer.

,IOUNT Dismounts a file system volume from
disk drive 0.

PRINT Prints the contents of a file on the

printer.

TIME Displays the current time.

TYPE Displays the contents of a file on the
system console.

The CLI prompts the user for a command line by

46...... . , d . . , -.

.. - u.. . . . -.. ,

P25

* writing '$ ' to the system console. A command line

consists of a command name terminated by a carriage return.

Table 2-8 lists the commands which are provided by the CLI.

Once the user enters a command line, the CLI checks to see

if the command is valid. If it is, the command is then

executed; if it isn't, the CLI displays an error message

t and then prompts the user for another command line. The

user is prompted for any arguments that a command needs

to perform its function.

When a command has completed execution, the CLI

prompts the user for another command line.

The Executive Process. The initialization or

startup of both system and user processes is accomplished

by the Executive Process (EXEC). After all system data

structures have been initialized by the kernel

initialization routine, control is passed to EXEC. EXEC

then creates and activates the other processes that make up

PCOS using the CREATEPROCESS and ACTIVATEPROCESS kernel

primitives. Once it has started the other system

processes, EXEC suspends execution awaiting a system

termination message.

V

26

CHAPTER III

FURTHER RESEARCH AND DEVELOPMENT

The need for the following modifications to the PCOS

kernel was made apparent during the development of the BIOS

device driver processes.i
The current implementation of the PCOS kernel does

not include primitive operations for exception management.

An exception occurs whenever a kernel primitive fails.

Each kernel primitive returns a condition code that

indicates the success or failure of an operation.

Currently, processes must check the condition code after

each kernel call in order to determine if an exception

occurred. In order to reduce the amount of checking a

process must perform, the kernel should be modified to

include exception management primitives.

Table 3-I. Proposed Exeception Management Services

CATEGORY SERVICE

Exception Manageiment Create Exception Handler
Destroy Exception Handler

Processes should be able to specify an exception

handler that is to receive control whenever an exception

27

f occurs. Table 3-1 lists the exception management services

-that the kernel should provide.

Another operation which the PCOS kernel does not

currently support is the selective receipt of messages.

This seems to be the greatest deficiency of the PCOS

kernel. Consider the following scenario. Process A sends

a message requesting some service to Process B, and then

continues processing. In order to fulfill the request,

Process B sends a request message to Process C and then

waits for a response message from Process C. Before

Process C can respond, Process A issues another request

message to Process B. Since Process B is waiting for a

message, it is awakened and given the second request

*message from Process A. However, Process B is expecting a

response message from Process C, not a request message from

Process A.

There are two possible solutions to this problem.

The first solution is to require processes internally queue

messages that they are not ready to process. The second

solution is to modify the kernel to include a selective

message receipt primitive. The second solution is

recommended since it simplifies the construction of server

processes.

This solution can be implemented by modifying the

receivemessage primitive to only receive a message from a

specified process, and by adding a receiveany_message

............................ -......... - .

28

primitive that receives a messge from any process.

-Once the above modifications are made, the kernel

will be suitable for continued development of PCOS.

.1
Ii,-

Iv

29

CHAPTER IV

CONCLUSION

This thesis documents the design and implementation

of an operating system for the IBM PC. The purpose of this

research project was to develop an operating system which

could be used to provide students with a better

understanding of operating system principles.

After discussing the motivation for the PCOS

project, the development of PCOS was discussed. First, the

requirements for PCOS were discussed. The requirements for

PCOS were established after reviewing the capabilities

offered by several commercially available operating

systems.

Next, the design criteria and the overall design of

PCOS was discussed. The design of PCOS is based on the

kernel approach. New user requirements such as the need to

support a new I/O device can be easily supported through

the addition of new processes. In retrospect, we believe

the kernel-based design of PCOS provides a good base for

further research.

Then, the implementation of PCOS was discussed.

PCOS was designed and implemented on an IBN. PC. Because of

the work needed to construct a complete operating system,

' .--.4 , ' y ' '- -'.. ,., --- .. .' ..-- --.. .- .-- ..-.. , ... -. .. -,. ..: .I ... - . . -b . .,, _ ." -, - - - -. " - -. . - , '. . . - " - -- - -

30

this project focused on the design and implementation of

the kernel and the low-level device drivers. The kernel

provides a set of primitive operations that support

cooperation of asynchronous processes. And, the device

drivers provide support for a video display, keyboard,

disk drive, and printer. A simplistic file server and

command language interpreter were also developed.

Modifications and extensions to PCOS were then

presented. The modifications presented are necessary in

order to refine the current implementation of PCOS on

the IBM PC. The full implementation of the File Server,

and the Command language Interpreter has been left for

future research efforts.

The author feels that PCOS is a valuable pedagogical

aid. Althougi PCOS is not nearly as complex as OS/MVS or

Uni:,, it does contain many of the basic concepts found in

conmercialLv available operating systems. Due to its more

simplistic nature, a detailed description is easier to

provide and thus easier for students to understand.

This research project incorporated the use of

various techniques in several topic areas and resulted in a

challenging and rewarding experience for the author. The

author hopes that this project will generate continued

interest in the subject of operating system design.

31

REFERENCES

Agoston, Max K. "A Microprocessor Operating System: The
Kernel." Dr. Dobb's Journal, 2 (September 1977), 20-
40.

Banahan, Mike, and Andy Rutter. The Unix Book. New York:
John Wiley & Sons, Inc., 1983.

Bauer, Henry R. "The Design of a T1980A Operating System
for Classroom Use." ACM SIGCSE Bulletin, 7, No. 1,
(February 1975), 20-22.

Bauer, H. R., G. D. Thomas, and J. Van Baalen. "A
Multiprogramming Operating System for the T1980A."
Proceedings of ACM 76, 1976, Houston, Texas, pp. 247 -

251.

Bayer, D. L., and H. Lycklama. "MERT - A Multi-Environment
Real-Time Operating System." Proceedings of the Fifth
Svmposium on Operating Systems Principles, 19-21
November 1975, Austin, Texas, pp. 33-42.

Brincn-iansen, Per. "The Nucleus of a Multiprogramming

System." Communications of the ACM, 13, No. 4 (April
1970), 238-241, 250.

Brinch-Hansen, Per. Operating System Principles.
Englewood Cliffs, N. J.: Prentice-Hall, 1973.

Britton, Dianne E., and Mark E. Stickel. "An Interprocess
Communication Facility for Distributed Applications."
IEEE COMPCON 80, 23-25 September 1980, Washington,
D.C., pp. 590-595.

Burgett, Kenneth, and Edward F. O'Neil. "An Integral Real-
Time Executive for Microcomputers." Computer Design,
16, No. 7 (July 1977), 77-82.

Crowley, Charles. "The Design and Implementation of a New
UNIX Kernel." AFIPS Conference Proceedings, Vol. 50.
4-7 May 1981, Chicago, Illinois, pp. 265-271.

Deitel, Harvey M. An Introduction to Operating Systems.
The Systems Programming Series. Reading, Ma.: Addison-
Wesley, 1983.

32

Faro, A., G. Messina, and A. Serra. "A Network Operating
System for Local Computer Networks." Proceedings of
the IEEE Real-Time Systems Symposium. 8-10 December
1981, Miami Beach, Florida, pp. 13-21.

Frank, G. R., and C. J. Theaker. "The Design of the MUSS
Operating System." Software-Practice and Experience,
9, No. 8 (August 1979), 599-620. (a)

VFrank, G. R., and C. J. Theaker. "MUSS - The User
Interface." Software-Practice and Experience, 9, No. 8

*(August 1979), 621-631. (b)

Freedman, A. L., and R. A. Lees. Real-time Computer
9Systems. Computer Systems Engineering Series. New

York: Crane, Russak & Company, Inc., 1977.

Garetti, P., P. Laface, and S. Rivoira. "On the
Development of a Distributed Operating System Kernel

. for Real-Time Applications." Proceedings of the
IFAC/IFIP Workshop on Real Time Programming. 31 August-
2 September 1981, Kyoto, Japan, pp.10 7-114 .

Gorski, J. "KRTM -- A Kernel Which Supports Real Time
Multiprograms." Proceedings of the IFAC/IFIP Workshop
on Real Time Programming. 14-16 April 1980, Schloss
Retzhof, Leibnitz, Austria, pp. 9-18.

Hammond, Richard A. "Experiences with the Series/l
Distributed System." IEEE COMPCON 80. 23-25 September
1980, Washington, D. C., pp. 585-589.

Haridi, S., and Lars-Erik Thorelli. "Design and Use of a
Simple Monitor for Small Computers." Proceedings of
the IFAC/IFIP Workshop on Real Time Programming. 19-21
June 1978, Mariehamn/Aland, Finland, pp. 35-40.

Holt, R. C. Concurrent Euclid, The Unix System, and Tunis.

Addison-Wesley Series in Computer Science. Reading,
Massachusetts: Addison-Wesley Publishing Company, Inc.,
1983.

Kahn, Kevin C. "A Small-Scale Operating System Foundation
for Microprocessor Applications." Proceedings of the
IEEE, 66, No. 2 (February 1978), 209-216.

LaGarde, J. M., G. Olivier, and G. Padiou. "An Operating
System Course Project." ACM SIGCSE Bulletin, 13, No. 2
(June 1981), 34-48.

* ...I.... -.............. -.-.. .
. - • , - , ' " ',' ' " " ". " ,- , " ,. ,.."-.. . . .-..,.. -.' .

I-1". .. .".- " '. " - ." " ' - '

33

Lane, Malcolm G. "Teaching Operating Systems and Machine
Architecture -- More on the Hands-on Laboratory
Approach." ACM SIGCSE Bulletin, 13, No. 1 (February
1981), 28-36.

Lions, J. "An Operating System Case Study." Operating
Systems Review, 12, No. 3 (July 1978), 46-53.

Lycklama, H., and D. L. Bayer. "UNIX Time-Sharing System:
The MERT Operating System." Bell System Technical
Journal, 57, No. 6 (July-August 1978), 2049-2086.

Madnick, S. E., and J. J. Donovan. Operating Systems.

New York: McGraw-Hill, 1974.

Mark, Anthony, Otto Eggenberger, and Jurgen Nehmer.
"Experiences in the Design and Implementation of a
Structured Real-Time Operating System." Proceedings of

5. the IFAC/IFIP Workshop on Real-Time Programming,
Eindhover, Netherlands, 20-22 June 1977, 133-137.

McCharen, Edith A. "MVS in the Classroom." ACM SIGCSE
Bulletin, 12, No. 1 (February 1980), 81-82.

McKeag, R. M. Studies in Operating Systems. New York:
Academic Press, 1976.

Pohjanpalo, Hannu. "MROS -- 68K, a Memory Resident
Operating System, for MC68000." Software-Practice and
Experience, 11, No. 8 (August 1981), 845-852.

Seidel, H. A., and G. Grebe. "A Kernel for a Concurrent
Pascal Operating System." Operating Svstems: Theory
and Practice. D. Lanciaux (ed.). North-Holland
Publishing Company, 1979.

Shaw, Alan. "A Multiprogramming Nucleous with Dynamic
Resource Facilities." Software-Practice and
Exoerience, 5, No. 3 (July-September 1975), 245-267.

Sincoskie, W. David, and David J. Farber. "SODS/OS: A
Distributed Operating System for the IBM Series/i."
Operatinpg Systems Review, 14, No. 3 (July 1980), 46-55.

Soloman, Marvin H., and Raphael A. Finkel. "The Roscoe
Distributed Operating System." Proceedings of the
Seventh Symposium on Operating System Principles,
Pacific Grove, California, 10-12 December 1979, 108-
114.

.. , " "- ,,, -, - - - - - - - .- . ." - . .- - .'...-..... -. .

34

Thorelli, Lars-Erik. "A Monitor for Small Computers."
Software-Practice and Experience. 8, No. 4 (July-
August 1978), 439-450.

Wadland, Kenneth R. "Operating System Projects for
Undergraduates." ACM SIGCSE Bulletin, 12, No. 1
(February 1980), 75-80.

Zarrella, John, ed. Microprocessor Operating Systems.
Suisun City, California: Microcomputer Applications,
1981.

tZarrella, John, ed. Microprocessor Operating Systems.
Vol. 2. Suisun City, California: Microcomputer
Applications, 1982.

I,

LI
* 135

APPENDIX A

KERNEL PRIMITIVES

* 9

S I D

36

ACTIVATEPROCESS

FORMAT:

status := activateprocess(process);

INPUT PARAMETERS:

process A word containing the id of the process
to be activated.

*OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The ACTIVATEPROCESS primitive activates a process if it
is suspended.

a

CONDITION CODE:

CCOK No exceptional conditions.

CCEXIST The specified process does not exist.

CC-ACTIVE The specified process is already
active.

9

37

ALLOCATEMEMORY

FORMAT:

status := allocate memory(amount,
memory);

INPUT PARAMETERS:

amount A word that specifies the number of
paragraphs (a paragraph is 16 bytes)
requested.

OUTPUT PARAMETERS:

memory A pointer in which PCOS will return the
address of the first available byte of
the allocated memory block.

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The ALLOCATE MEMORY primitive returns a pointer to the
first available byte of the requested memory block.

CONDITION CODES:

CCOK No exceptional conditions.

CCMEMORY There is not enough memory available to
satisfy the request.

, [38

AWAITINTERRUPT

FORMAT:

status := await interrupt(delay);

INPUT PARAMETERS:

delay A word which specifies the amount of
time the process is willing to wait for
an interrupt. If zero, the process is
willing to wait indefinitely. If
positive, delay indicates the number of
system time units the process is
willing to wait. There are 20 system
time units per second.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The AWAITINTERRUPT primitive causes the currently
executing process to be suspended until the interrupt
with which it is associated occurs or the delay is
exhausted.

CONDITION CODES:

CC OK No exceptional conditions.

CC TIMEOUT A timeout occurred.

* - -- r%

39

CONNECT INTERRUPT

FORMAT:

status := connectinterrupt(interrupt,

handler);

INPUT PARAMETERS:

interrupt A word indicating the interrupt vector
with which the process is to be
associated.

handler A pointer to the first instruction of
the interrupt handler.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:
4

The CONNECTINTERRUPT primitive assigns a process and
an interrupt handler to an interrupt vector.

CONDITION CODES:

CCOK No exceptional conditions.

CC-EXIST The specified interrupt vector does not
exist.

CC ASSIGN The specified interrupt vector is
already assigned an interrupt handler.

- *'-. -i .i? ' " -" . .- . ' ' ' ' ' -. ' - -.. . - -- . . - ". "-" . - .• - . -• - . .

p " , " . - - J. : ':. , ', ' .,..' -, ' . ' .:' ''' ...-'-' .@

40

CREATEPROCESS

FORMAT:

status := create process(process,
name,
priority,
start-address,
stack-address,
stack-size);

INPUT PARAMETERS:

name A field which contains a string of six
ASCII characters giving the name of the
process.

priority A word that specifies the priority of
the new process.

start-address A pointer to the first instructions of
the new process.

stack address A pointer to the base of the new
process' stack.

stack size A word containing the size, in bytes,
of the new process' stack.

OUTPUT PARAMETERS:

process A word in which PCOS will return the
identification number for the new
process.

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The CREATEPROCESS primitive creates a process and
returns an id for it.

CONDITION CODES:

CCOK No exceptional conditions.

41

CCLIMIT The new process would except the
maximum number of process allowed by
the system.

.

42

DEALLOCATEMEMORY

FORMAT:

status := deallocatememory(memory);

INPUT PARAMETERS:

memory A pointer to the first byte of the
memory block to be retruned to the
system.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The RELEASEMEMORY primitive returns a block of memory to
the system.

CONDITION CODES:

CCOK No exceptional conditions.

CCEXIST The value contained in memory does not
point to a valid memory block.

.. ..:-i -?..- . .-i-..i- .. .i -i.? -i ----. ? -. . ., ° .&::i'----2Li..?. .-.?.,:?.'L?..-".. . .:: 5 i.. . . . _ ,) .., .; .

43

DESTROYPROCESS

FORMAT:

status := destroyprocess(process);

INPUT PARAMETERS:

process A word containing the id of the process
to be destroyed.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

*DESCRIPTION:

The DESTROYPROCESS primitive deletes the specified
process from the system. The process must be suspended
before it can be destroyed.

CONDITION CODES:

CCOK No exceptional conditions.

CC-EXIST The specified process does not exist.

CC STATE The specified process is not suspended.

44

DISCONNECTINTERRUPT

FORMAT:

status := disconnectinterrupt(interrupt);

INPUT PARAMETERS:

interrupt A word specifying the interrupt vector
from which the process is to be

disconnected.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The DISCONNECT INTERRUPT primitive cancels the assignment

of the process to an interrupt vector.

CONDITION CODES:

CCOK No exceptional conditions.

CCEXIST The specified interrupt vector does not
exit.

CC ASSIGN The specified interrupt vector is not
currently assigned an interrupt
handler, or is not assigned to the
process.

45

FINDPROCESS

FORMAT:

status findprocess(process,
name

INPUT PARAMETERS:

name A field which contains a string of six
ASCII characters giving the name of the
process.

OUTPUT PARAMETERS:

process A word in which PCOS will return the id
of the process whose name is identical
to the identifier contained in name.

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The FINDPROCESS primitive searches the queue of process
known to PCOS. If a process is found whose name is
identical to the process name contained in name its id is
returned in process. Otherwise, an CC EXIST exceptional
condtion occurs.

CONDITION CODES:

CCOK No exceptional conditions.

CCEXIST The specified process does not exist.

46

READCLOCK

FORMAT:

status := read clock(hours,
minutes,
seconds,
ticks);

INPUT PARAMETERS:

none

OUTPUT PARAMETERS:

hours A word containing the present hour.

minutes A word containing the present minute.

* seconds A word containing the present second.

ticks A word containing the present tick.

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The READCLOCK primitive returns the current setting of
the system clock.

CONDITION CODES:

CCOK No exceptional conditions.

. . - -- .• . " .'. - . .o +'o - - - . O .o -. S o . 4 . .- o-C + % ° . .+. - .. + - o % - . - -

"'' ''' ''' * " -. ' '" " - " .'-' ..- >"." .." -- " ---. "'- ° ' -. -. - .' - -
b . m -

- -

47

RECEIVEMESSAGE

FORMAT:

status := receivemessage(source,
message,
size,
delay);

t

INPUT PARAMETERS:t
message A message buffer.

size A word containing the size of the
message buffer.

delay A word which specifies the amount of
time the process is willing to wait for
a message.

OUTPUT PARAMETERS:

source A word containing the process id of the
process that sent the message.

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The RECEIVEMESSAGE primitive returns a message to the
calling process.

CONDITION CODES:

CCOK No exceptional conditions.

CC TIMEOUT A message was not received before the
delay was exhausted.

48

SENDMESSAGE

FORMAT:

status := send message(destination,
message,
size

INPUT PARAMETERS:

destination A word containing the id of the process to
which the message is to be sent.

message A message buffer.

size A word containing the size of the
message buffer.

4 OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The SEND MESSAGE primitive sends a message to the
specified process.

CONDITION CODES:

CCOK No exceptional conditions.

CC-EXIST The specified process does not exist.

I S*'<<*
..

.°-.-.ii...i , >- . i< . * .--i.-:!. - ,-- '- ? .- b . -'? .-' . .. ,

49

SETCLOCK

FORMAT:

status set clock(hours,
minutes,
seconds,
ticks);

INPUT PARAMETERS:

hours A word containing the new hour value.

minutes A word containing the new minute value.

seconds A word containing the new second value.

ticks A word containing the new tick value.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

.4

DESCRIPTION:

The SETCLOCK primitive sets the sytem clock.

CONDITION CODES:

CCOK No exceptional conditions.

I
t .- * . - *

.. '*b9 . .
""

* *. .

* *. _

50

SIGNALINTERRUPT

FORMAT:

status := signal-interrupt(interrupt);

INPUT PARAMETERS:

interrupt A word indicating the interrupt vector
whose process isto be signaled.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The SIGNALINTERRUPT primitive allows an interrupt
handler to activate its associated interrupt process

CONDITION CODES:

CCOK No exceptional conditions.

CCEXIST The specified interrupt vector does not
exist.

CCASSIGN The specified interrupt vector is not
assigned an interrupt process.

I

,-.-.- .. , ' .o.,j .- . ."-.". ... ,-"-'-"- '." "- '-"-" j, , , ,

51

SLEEP

FORMAT:

status := sleep(delay);

INPUT PARAMETERS:

delay A word which specifies the number of
system time units the process wishes to
be asleep. There are 20 system
time units per second.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The SLEEP primitive causes the currently executing process
to suspend its execution for a specified amount of time.

CONDITION CODES:

CCOK No exceptional conditions.

9

[*1-

.. - . . - - . - ~
- b . .t % -

52

SUSPENDPROCESS

FORMAT:

status := suspendprocess(process);

INPUT PARAMETERS:

process A word containing the id of the process
to be suspended.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The SUSPENDPROCESS primitive suspends a process.

CONDITION CODES:

CCOK No exceptional conditions.

CC-EXIST The process indicated could not be
found.

"4

* :* .* *

53

SYSTEMDUMP

FORMAT:

status := systemdump(start address,
stop-address);

INPUT PARAMETERS:

start- address A pointer containing the address of the
first byte to be displayed.

stop_address A pointer containing the address of the
last byte to be displayed.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The SYSTEM DUMP primitive produces a snapshot of the
contents of the registers and the specified memory block.
The dump is displayed on the system printer.

CONDITION CODES:

CC OK No exceptional conditions.

*.

' "---, ''""" " . , ,: - .." ."' i" .' ..n i i t ilii. **.S*. ni*'***ii5* .
Id V .e*

54

SYSTEMTRACE

* FORMAT:

status := system trace(message);

INPUT PARAMETERS:

message A character string.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The SYSTEMTRACE primitive displays the specified
message on the system printer.

CONDITION CODES:

CCOK No exceptional conditions.

2..

FIME

p , -

~FILME D

12-85

DTIC

